getInputSize
Returns the default input layer size for the neural network.
This method provides the standard input dimensionality used when no explicit input size is specified during model creation.
Default Configuration:
Input Size: 3 neurons/features
Rationale: Suitable for simple 3D feature vectors or RGB color channels
Use Cases: Prototype development, educational examples, minimal viable networks
Feature Vector Examples:
[feature1, feature2, feature3] → Input Layer [3 neurons]
[x_coordinate, y_coordinate, z_coordinate] → Spatial data
[red_channel, green_channel, blue_channel] → Color analysis
[price, volume, volatility] → Financial indicatorsIntegration Notes:
Value matches default parameter in createModel for consistency
Can be overridden per model instance as needed
Serves as baseline for architecture scaling decisions
Performance Impact:
Memory: Minimal impact with only 3 input connections per first hidden neuron
Computation: Fast forward pass suitable for real-time applications
Training: Quick convergence for linearly separable problems
Return
Default input layer size (3) representing number of input features
See also
Model creation with customizable input size
Corresponding default output layer size